Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Geospat Health ; 17(2)2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2155485

ABSTRACT

After the fifth wave of the COVID-19 outbreak in May 2022, the Hong Kong government decided to ease the restrictions policy step by step. The main change was to re-open some venues that people like to visit and extend the hours of operation. With the implementation of the relaxed policy, however, the number of confirmed cases rose again. As a result, further relaxation was delayed. As an evaluation of the effectiveness of the restrictions policy could be a reference for future policies balancing viral spread and functionality of society, this paper aimed to respond to this question from the spatial point distribution view. The time, from late March 2020 to February 2021, during which the related policies took place was divided into six periods based on the policy trend (tightening or relaxing). The two-variable Ripley's Kfunction was applied for each period to explore the spatial dependence between confirmed cases and venues as changes in the spatial pattern can reveal the effect of the policy. The results show that, as time passed, the clustering degree decreased and reached its lowest level from August to mid-November 2020, then significantly increased, with the extent of clustering becoming more remarkable and the significant cluster size widening. Our results indicate that the policy had a positive effect on suppressing the spread of the virus in mid-July 2020. Then, with the virus infiltrating the community, the policy had little impact on containing the virus but likely contributed to avoid further infection.


Subject(s)
COVID-19 , Humans , Hong Kong/epidemiology , COVID-19/epidemiology , Policy , Cluster Analysis , Disease Outbreaks
2.
BMC Infect Dis ; 22(1): 274, 2022 Mar 21.
Article in English | MEDLINE | ID: covidwho-1753108

ABSTRACT

BACKGROUND: Motivated by the need for precise epidemic control and epidemic-resilient urban design, this study aims to reveal the joint and interactive associations between urban socioeconomic, density, connectivity, and functionality characteristics and the COVID-19 spread within a high-density city. Many studies have been made on the associations between urban characteristics and the COVID-19 spread, but there is a scarcity of such studies in the intra-city scale and as regards complex joint and interactive associations by using advanced machine learning approaches. METHODS: Differential-evolution-based association rule mining was used to investigate the joint and interactive associations between the urban characteristics and the spatiotemporal distribution of COVID-19 confirmed cases, at the neighborhood scale in Hong Kong. The associations were comparatively studied for the distribution of the cases in four waves of COVID-19 transmission: before Jun 2020 (wave 1 and 2), Jul-Oct 2020 (wave 3), and Nov 2020-Feb 2021 (wave 4), and for local and imported confirmed cases. RESULTS: The first two waves of COVID-19 were found mainly characterized by higher-socioeconomic-status (SES) imported cases. The third-wave outbreak concentrated in densely populated and usually lower-SES neighborhoods, showing a high risk of within-neighborhood virus transmissions jointly contributed by high density and unfavorable SES. Starting with a super-spread which considerably involved high-SES population, the fourth-wave outbreak showed a stronger link to cross-neighborhood transmissions driven by urban functionality. Then the outbreak diffused to lower-SES neighborhoods and interactively aggravated the within-neighborhood pandemic transmissions. Association was also found between a higher SES and a slightly longer waiting period (i.e., the period from symptom onset to diagnosis of symptomatic cases), which further indicated the potential contribution of higher-SES population to the pandemic transmission. CONCLUSIONS: The results of this study may provide references to developing precise anti-pandemic measures for specific neighborhoods and virus transmission routes. The study also highlights the essentiality of reliving co-locating overcrowdedness and unfavorable SES for developing epidemic-resilient compact cities, and the higher obligation of higher-SES population to conform anti-pandemic policies.


Subject(s)
COVID-19 , COVID-19/epidemiology , Cities/epidemiology , Cross-Sectional Studies , Humans , Residence Characteristics , Social Class
SELECTION OF CITATIONS
SEARCH DETAIL